Submesoscale currents in the ocean
نویسنده
چکیده
This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing. Consideration is given to their generation mechanisms, instabilities, life cycles, disruption of approximately diagnostic force balance (e.g. geostrophy), turbulent cascades, internal-wave interactions, and transport and dispersion of materials. At a fundamental level, more questions remain than answers, implicating a programme for further research.
منابع مشابه
Seasonality in submesoscale turbulence
Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring dee...
متن کاملBringing physics to life at the submesoscale
[1] A common dynamical paradigm is that turbulence in the upper ocean is dominated by three classes of motion: mesoscale geostrophic eddies, internal waves and microscale three-dimensional turbulence. Close to the ocean surface, however, a fourth class of turbulent motion is important: submesoscale frontal dynamics. These have a horizontal scale of O(1–10) km, a vertical scale of O(100) m, and ...
متن کاملTopographic generation of submesoscale centrifugal instability and energy dissipation
Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of ener...
متن کاملOcean Currents Modeling along the Iranian Coastline of the Oman Sea and the Northern Indian Ocean
The Makran Coast (Iranian Coastline of the Oman Sea on the Northern Indian Ocean) plays an important role in country’s future navigation and trade due to its accessibility. In 2014, the Iranian Makran coastline was selected by the PMO to be studied as the Phase 6 in the series of Monitoring and Modelling Studies of Iranian Coasts with all disciplines being in investigated including currents. Al...
متن کاملMapping the U.S. West Coast surface circulation: A multiyear analysis of high‐frequency radar observations
[1] The nearly completed U.S. West Coast (USWC) high‐frequency radar (HFR) network provides an unprecedented capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current measurements at up to 1 km resolution. The dynamics of the surface currents off the USWC are governed by tides, winds, Coriolis force, low‐frequency pressure gradients (less than ...
متن کامل